

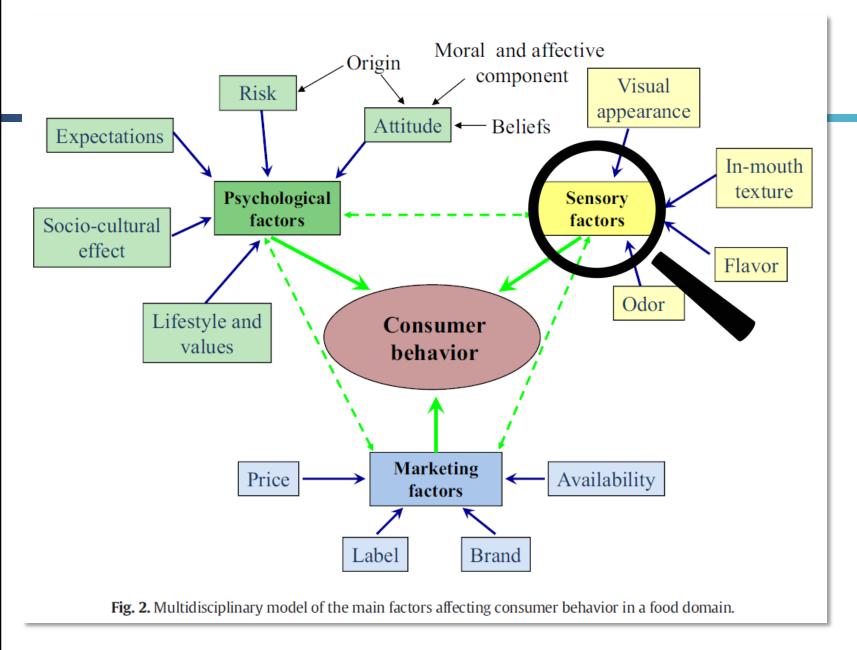
GEORG-AUGUST-UNIVERSITÄT Göttingen

Sensory evaluation of meat and meat products

Daniel Mörlein University of Göttingen, Germany

Outline

Why we need sensory science
A central paradigm (and what should not be done)
What can be learned from it (examples)


Why sensory evaluation?

Do you have **human beings** among your customers?

Do you have **competitors** in your product segment?

Could the choice expressed by your customers have sensory **explanations**?

Various sensory evaluation techniques are used to answer distinct questions.

Photo credit: isi GmbH, Germany

Beware: Never ask trained sensory assessors to indicate liking. Instead, invite consumers.

Trained assessors for objective tests

VS.

Naive consumers for hedonic tests

consumer insights product development quality control fundamental research marketing

Quality control: at-line vs. off-line sensory evaluation of boar carcasses

Photographs: SUS

Sometimes, our ability to smell affects whether we like a product: the case of boar taint

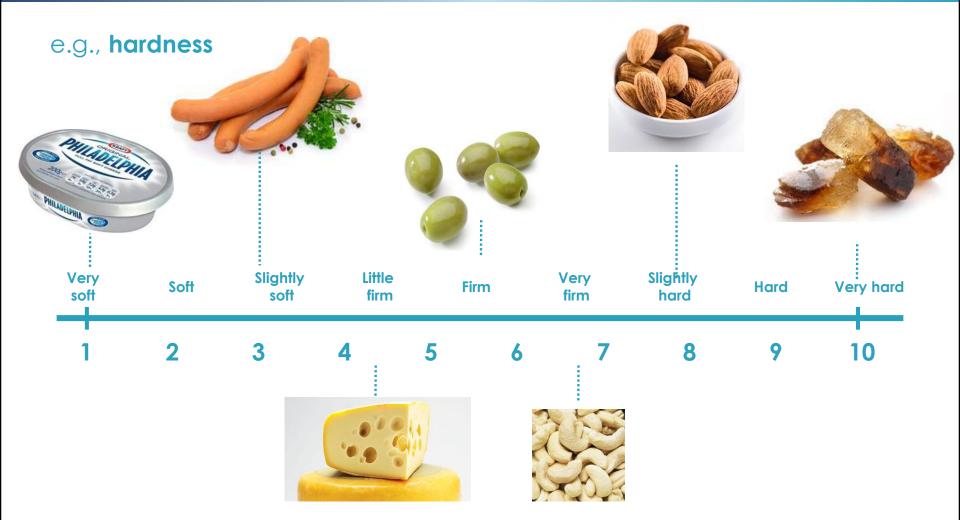
Partial anosmia:

- disability to perceive a given odorant by otherwise norm-osmic subjects
- Incidence for androstenone 7...75 %
- Partially determined by genetics (OR7D4)
- → Consider for trained panels and consumer tests

100 Legend O Sensitive 80 × Insensitive 0000 Intensity 40 , COC 40 20 RT/RT RT/WM WM/WM **OR7D4** Genotype

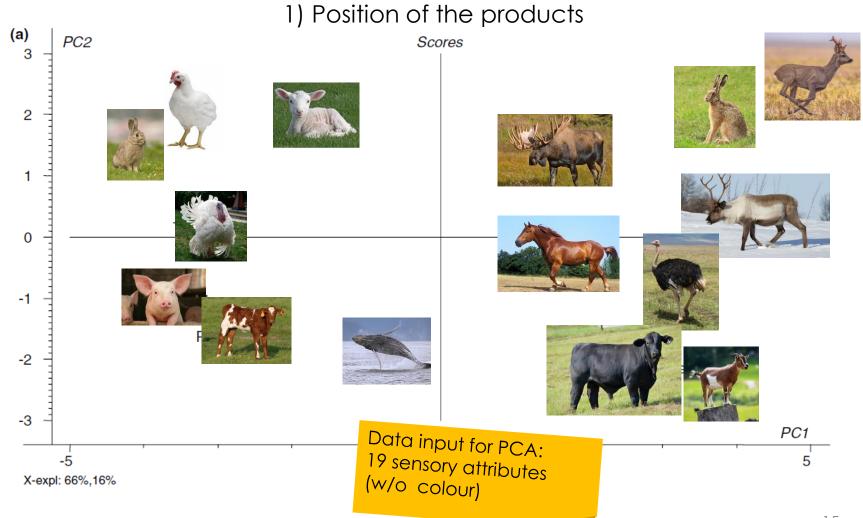
LUNDE et al., 2012 PLoS one

AMOORE, 1977 HAVLICEK et al., 2010. Vitamins and Hormones. KELLER et al., 2007, Nature.

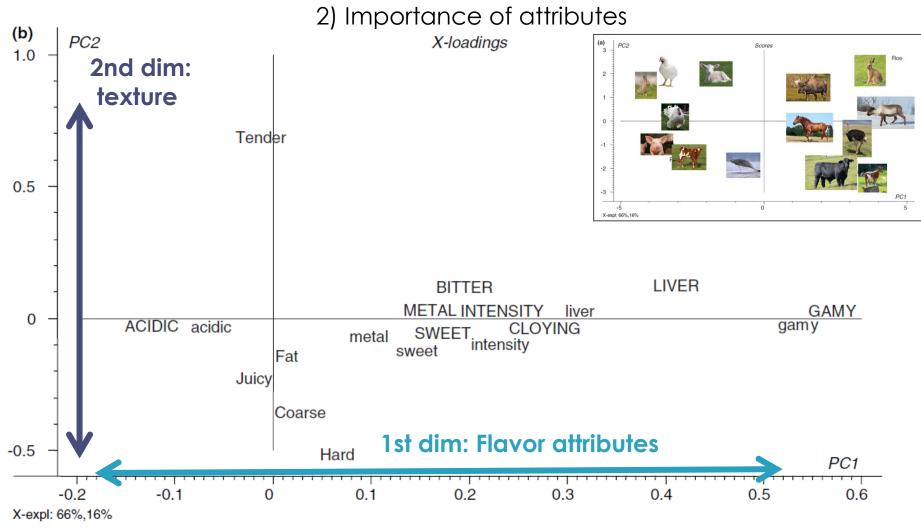

Intensive training is required for quantitative descriptive analyses ("profiling").

Demittions of sense		
Sensory attributes	Definition	
Odour		_
Intensity of odour	Intensity of sum of all odours	
Sweetness	Odour of sugar	
Fruity acidic	Odour of fruity/fresh and sour/sweet	Use reference materials,
Metallic	Odour of ferrosulphate	SO EVELY OSSESSOR
Liver	Odour of animal liver	Understands the
Gamy	Odour of wild animal	attribute.
Flavour		
Flavour intensity	Intensity of sum of all flavours	
Sweet	Flavour of sugar	
Acidic	Flavour of fruity/fresh and sour/sweet	
Metallic	Flavour of ferrosulphate	
Liver	Flavour of animal liver	
Gamy	Flavour of wild animal	
Cloying	Flavour of flat, stale, sweetlike	
Bitter	Flavour of bitter substance, like quinine	

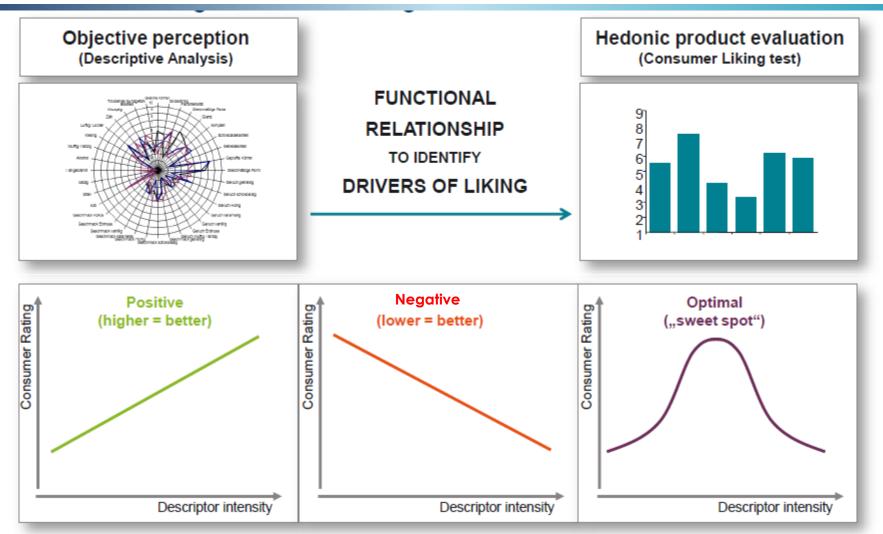
Definitions of sensory attributes used in sensory profiling


The use of scales for quantitative descriptive analysis (QDA) can be trained using references.

Huidobro et al., (2005): Meat Science 29 (527-536).


Æ

A "sensory landscape" is created using multivariate statistical analysis (e.g., PCA).


Acidic vs. gamy flavor & tender vs. hard texture determine the sensory space of meat.

Rødbotten et al. / Meat Science 68 (2004) 137-144

Link trained panel data with consumer ratings to understand drivers of liking

Link trained panel data with consumer ratings to understand drivers of liking

Table 9

Pearson correlation coefficients among descriptive flavor attributes, consumer sensory scores, proximate comp

	Consumer sensory evaluation scores		
Attribute	Overall liking	Flavor	Tenderness
Initial flavor impact Beef ID	-0.04 0.36*	-0.11 0.35*	0.13 0.22
Positive drivers: Fat-like (r = .69) Bloody/serumy (r = .53) Umami (r = .59)		Negative drivers: Warmed-over (r =53) Cardboard (r =63) Fish-ID (r =40)	
Overall sweet Oxidized Warmed-over Fish ID Sour Bitter Salty Umami	$\begin{array}{c} 0.47^{**} \\ 0.15 \\ -0.65^{**} \\ -0.40^{**} \\ -0.10 \\ -0.20 \\ 0.28 \\ 0.59^{**} \end{array}$	$\begin{array}{c} 0.46^{**} \\ 0.13 \\ -0.67^{**} \\ -0.48^{**} \\ -0.14 \\ -0.18 \\ 0.34^{*} \\ 0.59^{**} \end{array}$	0.45** 0.27 -0.53** -0.22 -0.07 -0.11 0.23 0.51**

Beef strip loins Fat: 2 ... 26% Incl. Wagyu, gras-fed, corn-fed

,,

Fat level was the primary driver of beef flavour acceptability in all samples when no undesirable offflavours were present

* Correlation coefficient differs from 0 (P < 0.05).

** Correlation coefficient differs from 0 (P < 0.01).

¹ All steaks were classified as tender (<33.34 N; 3.4 kg) according to Miller et al. (2001).

Bloody/serumy is also liked in veggie burgers -and mimicked there using plant heme-

Beware, olfactory information is sometimes discounted by visual information

Hence, one may **mask** product colour if focus is on flavor only.

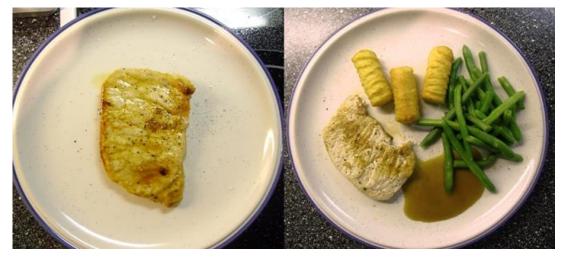
R

Good Sensory Practice

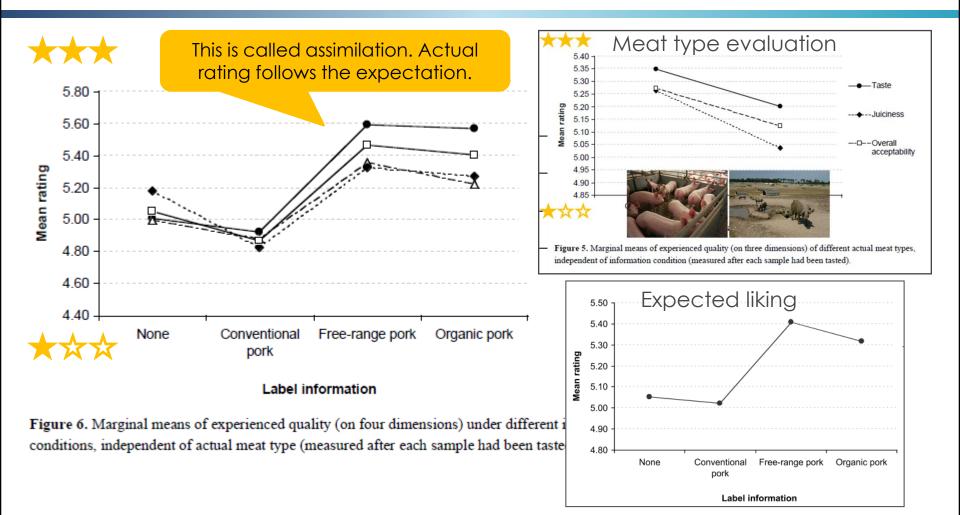
control of:

- Test facilities (e.g. light, temperature, ventilation)
- Products (preparation, amount, temperature, appearance)
- Test subjects (trained vs. consumers)
- Coding, serving order
- Context

Sometimes, context does not affect the results.


Meat Science 122 (2016) 119-124

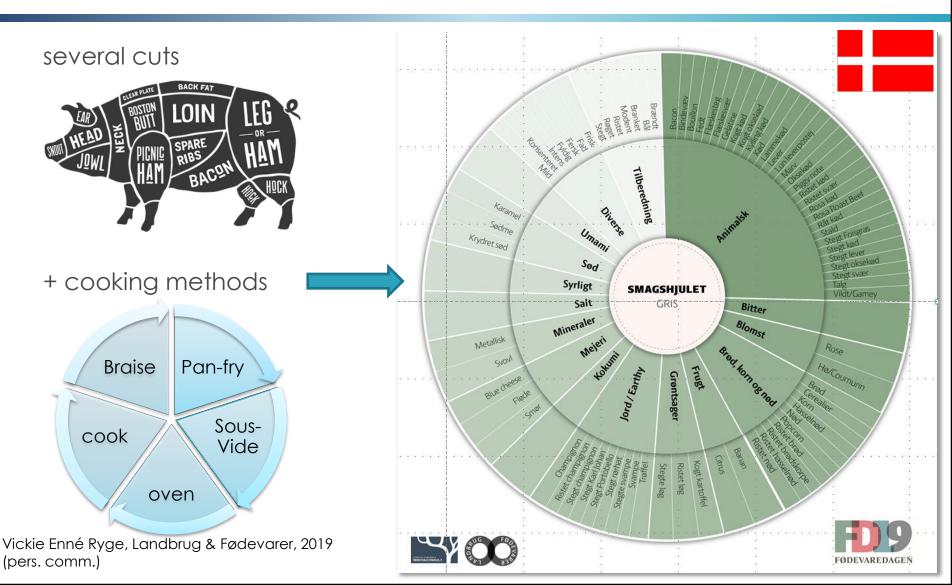
Consumers dislike boar taint related off-flavours in pork chops regardless of a meal context



Lisa Meier-Dinkel^a, Micha Strack^{b,c}, Kathrin Höinghaus^d, Daniel Mörlein^{a,c,*}

R

Sometimes, however, it does: "Organic" and "free range" improve liking.



Scholderer et al. (2004). Organic pork: Consumer quality perceptions. Project paper, ISSN 0907 2101 Aarhus School of Business, Danish Meat Research Institute, Danish Institute of Agricultural Sciences)

What can be learned from the wine marketing?

Development of a (positive) vocabulary to communicate the flavour of pork to consumers

Æ

Potential applications of sensory claims

dry-aged pork https://trnto.dom https://tierradeliberico.com

13

special feeding & husbandry

Local specialities

...which one of your senses would be **worst to lose**?

NEW SCIENTIST LIVE 2019 Tickets selling fast: book your place now!

News Technology Space Physics Health Environment Mind Video | Tours Events Jobs

HEALTH 24 April 2013

LOSING your sense of taste or smell might not rank very high on the list of things to worry about. Going blind or deaf would surely be worse.

Yet anosmia, as it is called, has a disproportionately negative effect. Deprived of the pleasure of eating and drinking, anosmics often descend into depression. With around 1 in 20 people affected – more than are visually impaired – the condition is responsible for an awful lot of human misery.

Thank you for your time!

daniel.moerlein@uni-goettingen.de